Divisione tra frazioni: esercizio 2

Vediamo un altro esercizio di divisione tra frazioni. Proviamo a calcolare sei tredicesimi fratto 2.

Divisione tra frazioni

In questa frazione abbiamo al numeratore una frazione. Al denominatore invece abbiamo un numero naturale. Niente paura. I passaggi da eseguire sono gli stessi di quelli visti nell’ articolo in cui parlavo della divisione tra frazioni.

Dobbiamo moltiplicare la frazione al numeratore per l’inverso della frazione al denominatore. A questo punto starai pensando ‘ma al denominatore non abbiamo una frazione’. Ci arriveremo. Facciamo le cose una alla volta.

Passaggio 1

Come prima cosa riscriviamo la frazione al numeratore.

passaggio 2

La seconda cosa da fare è scrivere il segno della moltiplicazione.

Adesso dovremmo scrivere l’inverso della frazione al denominatore. Ma al denominatore abbiamo 2, che è un numero naturale. Quindi come facciamo? Abbiamo già visto in altri articole che tutti i numeri naturali (e quindi anche il numero 2) possono essere pensati come frazioni in cui il denominatore è 1.

Mi spiego meglio:

Questo non ci deve stupire. Ti ricordo che una frazione non è altro che una divisione scritta in modo diverso. Scrivere 2 fratto 1 è come 2 : 1. E sappiamo che 2 : 1 = 2.

Divisione tra frazioni

Ritorniamo alla nostra frazione. La frazione inversa di due fratto uno è uno fratto due.

Divisione tra frazioni: esercizio 2

Bene, adesso che abbiamo ricavato la frazione inversa, possiamo continuare.

Divisione tra frazioni: esercizio 2

passaggio 3

Adesso dobbiamo semplificare in croce. Dividiamo per 2 sia il 6 al numeratore della prima frazione sia il 2 al denominatore della seconda frazione.

Passaggio 4

Adesso che non è più possibile semplificare, non ci resta che moltiplicare.

Numeratore per numeratore, cioè 3 • 1 = 3.

Denominatore per denominatore, cioè 13 • 1 = 13.

Quello che otteniamo è:

Fantastico. Tre tredicesimi è il risultato che stavamo cercando. Esercizio concluso.



link utili

A questo link della Casa Editrice Zanichelli puoi trovare le tavole numeriche. Le puoi consultare o scaricare come file pdf.

Precedente Esercizi: divisione tra frazioni o frazione tra frazioni Successivo Potenza di una frazione: introduzione